Combinatorial proofs of inverse relations and log-concavity for Bessel numbers

نویسندگان

  • Hyuk Han
  • Seunghyun Seo
چکیده

Let the Bessel number of the second kind B(n, k) be the number of set partitions of [n] into k blocks of size one or two, and let the Bessel number of the first kind b(n, k) be the coefficient of x in −yn−1(−x) , where yn(x) is the nth Bessel polynomial. In this paper, we show that Bessel numbers satisfy two properties of Stirling numbers: The two kinds of Bessel numbers are related by inverse formulas, and both Bessel numbers of the first kind and the second kind form log-concave sequences. By constructing sign-reversing involutions, we prove the inverse formulas. We review Krattenthaler’s injection for the log-concavity of Bessel numbers of the second kind, and give a new explicit injection for the log-concavity of signless Bessel numbers of the first kind.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inductive concavity

Sagan, B.E., Inductive proofs of q-log concavity, Discrete Mathematics 99 (1992) 289-306. We give inductive proofs of q-log concavity for the Gaussian polynomials and the q-Stirling numbers of both kinds. Similar techniques are applied to show that certain sequences of elementary and complete symmetric functions are q-log concave.

متن کامل

A combinatorial proof of the log-concavity of the numbers of permutations with k runs

We combinatorially prove that the number R(n, k) of permutations of length n having k runs is a log-concave sequence in k, for all n. We also give a new combinatorial proof for the log-concavity of the Eulerian numbers.

متن کامل

A Combinatorial Proof of the Log-Concavity of a Famous Sequence Counting Permutations

We provide a combinatorial proof for the fact that for any fixed n, the sequence {i(n, k)}0≤k≤(n2) of the numbers of permutations of length n having k inversions is log-concave.

متن کامل

Negative correlation and log-concavity

OF THE DISSERTATION Negative correlation and log-concavity by Michael Neiman Dissertation Director: Jeff Kahn This thesis is concerned with negative correlation and log-concavity properties and relations between them, with much of our motivation provided by [40], [46], and [12]. Our main results include a proof that “almost exchangeable” measures satisfy the “FederMihail” property; counterexamp...

متن کامل

Strong log-concavity is preserved by convolution

We review and formulate results concerning strong-log-concavity in both discrete and continuous settings. Although four different proofs of preservation of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong log-concavity under convolution has apparently not been investigated previously in the continuous c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008